Type to search

Social Media

Neutral bots probe political bias on social media

Share

  • 1.

    Perrin, A. & Anderson, M. Share of Us Adults Using Social Media, Including Facebook, Is Mostly Unchanged Since 2018 (Pew Research Center, 2019).

  • 2.

    Kramer, A. D., Guillory, J. E. & Hancock, J. T. Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl Acad. Sci. USA 111, 8788–8790 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 3.

    Bond, R. M. A 61-million-person experiment in social influence and political mobilization. Nature 489, 295–298 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 4.

    Muchnik, L., Aral, S. & Taylor, S. J. Social influence bias: a randomized experiment. Science 341, 647–651 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 5.

    Weninger, T., Johnston, T. J. & Glenski, M. Random voting effects in social-digital spaces. In Proc. 26th ACM Conference on Hypertext & Social Media, 293–297 (ACM, 2015).

  • 6.

    Conover, M. D. et al. Political polarization on Twitter. In Proc. Fifth International AAAI Conference on Weblogs and Social Media (ICWSM), 89–96 (AAAI, 2011).

  • 7.

    Conover, M. D., Gonçalves, B., Flammini, A. & Menczer, F. Partisan asymmetries in online political activity. EPJ Data Sci. 1, 6 (2012).

    Article 

    Google Scholar 

  • 8.

    Hanna, A., et al. Partisan alignments and political polarization online. In Proc. 2nd Workshop on Politics, Elections, and Data, 15–22 (CIKM, 2013).

  • 9.

    Schmidt, A. L., Zollo, F., Scala, A., Betsch, C. & Quattrociocchi, W. Polarization of the vaccination debate on Facebook. Vaccine 36, 3606–3612 (2018).

    Article 

    Google Scholar 

  • 10.

    Williams, H. T. P., McMurray, J. R., Kurz, T. & Lambert, F. H. Network analysis reveals open forums and echo chambers in social media discussions of climate change. Glob. Environ. Change 32, 126–138 (2015).

    Article 

    Google Scholar 

  • 11.

    Jamieson, K. H. & Cappella, J. N. Echo Chamber: Rush Limbaugh and the Conservative Media Establishment (Oxford University Press, 2008).

  • 12.

    Garrett, R. K. Echo chambers online?: politically motivated selective exposure among Internet news users. J. Comput.-Medi. Commun. 14, 265–285 (2009).

    Article 

    Google Scholar 

  • 13.

    Lee, J. K., Choi, J., Kim, C. & Kim, Y. Social media, network heterogeneity, and opinion polarization. J. Commun. 64, 702–722 (2014).

    Article 

    Google Scholar 

  • 14.

    Flaxman, S., Goel, S. & Rao, J. M. Filter bubbles, echo chambers, and online news consumption. Public Opin. Q. 80, 298–320 (2016).

    Article 

    Google Scholar 

  • 15.

    Sunstein, C. R. #Republic: Divided Democracy in the Age of Social Media. (Princeton University Press, 2017).

    Book 

    Google Scholar 

  • 16.

    Garimella, K., De Francisci Morales, G., Gionis, A. & Mathioudakis, M. Political discourse on social media. In Proc. 2018 World Wide Web Conference, 913–922 (ACM, 2018).

  • 17.

    Wojcieszak, M. ‘Don’t talk to me: effects of ideologically homogeneous online groups and politically dissimilar offline ties on extremism. New Media Soc. 12, 637–655 (2010).

    Article 

    Google Scholar 

  • 18.

    Del Vicario, M. The spreading of misinformation online. Proc. Natl Acad. Sci. USA 113, 554–559 (2016).

    Article 
    ADS 

    Google Scholar 

  • 19.

    Bright, J. Explaining the emergence of political fragmentation on social media: the role of ideology and extremism. J. Comput.-Mediat. Commun. 23, 17–33 (2018).

    Article 

    Google Scholar 

  • 20.

    Nikolov, D., Flammini, A. & Menczer, F. Right and left, partisanship predicts (asymmetric) vulnerability to misinformation. HKS Misinform. Rev. https://doi.org/10.37016/mr-2020-55 (2021).

  • 21.

    Del Vicario, M., Scala, A., Caldarelli, G., Stanley, H. E. & Quattrociocchi, W. Modeling confirmation bias and polarization. Sci. Rep. 7, 40391 (2017).

    Article 

    Google Scholar 

  • 22.

    Sasahara, K. et al. Social influence and unfollowing accelerate the emergence of echo chambers. J. Comput. Soc. Sci. https://link.springer.com/article/10.1007/s42001-020-00084 (2020).

  • 23.

    Hills, T. T. The dark side of information proliferation. Perspect. Psychol. Sci. 14, 323–330 (2019).

    Article 

    Google Scholar 

  • 24.

    Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).

    Article 

    Google Scholar 

  • 25.

    McPherson, M., Lovin, L. S. & Cook, J. M. Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).

    Article 

    Google Scholar 

  • 26.

    Nikolov, D., Oliveira, D. F. M., Flammini, A. & Menczer, F. Measuring online social bubbles. PeerJ Comput. Sci. 1, e38 (2015).

    Article 

    Google Scholar 

  • 27.

    Baeza-Yates, R. Bias on the web. Commun. ACM 61, 54–61 (2018).

    Article 

    Google Scholar 

  • 28.

    Nikolov, D., Lalmas, M., Flammini, A. & Menczer, F. Quantifying biases in online information exposure. J. Assoc. Inf. Sci. Technol. 70, 218–229 (2019).

    Article 

    Google Scholar 

  • 29.

    Ciampaglia, G. L., Nematzadeh, A., Menczer, F. & Flammini, A. How algorithmic popularity bias hinders or promotes quality. Sci. Rep. 8, 1–7 (2018).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Avram, M., Micallef, N., Patil, S. & Menczer, F. Exposure to social engagement metrics increases vulnerability to misinformation. HKS Misinform. Rev. (2020).

  • 31.

    Ribeiro, M. H. et al. Auditing radicalization pathways on YouTube. In Proc. 2020 Conference on Fairness, Accountability, and Transparency, 131–141 (ACM, 2020).

  • 32.

    Thompson, R. Radicalization and the use of social media. J. Strateg. Secur. 4, 167–190 (2011).

    Article 

    Google Scholar 

  • 33.

    Shao, C. The spread of low-credibility content by social bots. Nat. Commun. 9, 1–9 (2018).

    Article 
    ADS 

    Google Scholar 

  • 34.

    Stella, M., Ferrara, E. & Domenico, M. D. Bots increase exposure to negative and inflammatory content in online social systems. Proc. Natl Acad. Sci. USA 115, 12435–12440 (2018).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Broniatowski, D. A. Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. Am. J. Public Health 108, 1378–1384 (2018).

    Article 

    Google Scholar 

  • 36.

    Zannettou, S. et al. Disinformation warfare. In Companion Proc. 2019 World Wide Web Conference, 218–226 (ACM, 2019).

  • 37.

    Caldarelli, G., Nicola, R. D., Vigna, F. D., Petrocchi, M. & Saracco, F. The role of bot squads in the political propaganda on Twitter. Commun. Phys. 3, 81 (2020).

    Article 

    Google Scholar 

  • 38.

    Colleoni, E., Rozza, A. & Arvidsson, A. Echo chamber or public sphere? predicting political orientation and measuring political homophily in Twitter using big data. J. Commun. 64, 317–332 (2014).

    Article 

    Google Scholar 

  • 39.

    Hargreaves, E. et al. Fairness in online social network timelines: measurements, models, and mechanism design. Perform. Eval. 129, 15–39 (2019).

    Article 

    Google Scholar 

  • 40.

    Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A. The rise of social bots. Commun. ACM 59, 96–104 (2016).

    Article 

    Google Scholar 

  • 41.

    Cha, M., Haddadi, H., Benevenuto, F. & Gummadi, K. P. Measuring user influence in Twitter. In Proc. 4th Intl. AAAI Conference on Weblogs and Social Media (ICWSM, 2010).

  • 42.

    Mosleh, M., Martel, C., Eckles, D. & Rand, D. G. Shared partisanship dramatically increases social tie formation in a Twitter field experiment. Proc. Natl Acad. Sci. USA 118, e2022761118 (2021).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Bessi, A. & Ferrara, E. Social bots distort the 2016 US presidential election online discussion. First Monday 21, 11. https://doi.org/10.5210/fm.v21i11.7090 (2016).

  • 44.

    Deb, A., Luceri, L., Badaway, A. & Ferrara, E. Perils and challenges of social media and election manipulation analysis: the 2018 US midterms. In Companion Proc. WWW Conf. 237–247 (2019).

  • 45.

    Varol, O., Ferrara, E., Davis, C. A., Menczer, F. & Flammini, A. Online human-bot interactions: Detection, estimation, and characterization. In Proc. Intl. AAAI Conf. on Web and Soc. Media (ICWSM, 2017).

  • 46.

    Yang, K.-C. et al. Arming the public with artificial intelligence to counter social bots. Hum. Behav. and Emerg. Technol. 1, 48–61 (2019).

    Article 

    Google Scholar 

  • 47.

    Lazer, D. et al. The science of fake news. Science 359, 1094–1096 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 48.

    Benkler, Y., Faris, R. & Roberts, H. Network Propaganda: Manipulation, Disinformation, and Radicalization in American Politics. (Oxford University Press, 2018).

  • 49.

    Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B. & Lazer, D. Fake news on Twitter during the 2016 US presidential election. Science 363, 374–378 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 50.

    Yan, H., Yang, K.-C., Menczer, F. & Shanahan, J. Asymmetrical perceptions of partisan political bots. New Media Soc. https://doi.org/10.1177/1461444820942744 (2020).

  • 51.

    Luceri, L., Deb, A., Badawy, A. & Ferrara, E. Red bots do it better: comparative analysis of social bot partisan behavior. In Companion Proc. 2019 World Wide Web Conference, 1007–1012 (ACM, 2019).

  • 52.

    Ghosh, R., Surachawala, T. & Lerman, K. Entropy-based classification of ‘retweeting’ activity on Twitter. In Proc. 4th Workshop on Social Network Mining and Analysis (SNA-KDD), 1406–1415 (ACM, 2011).

  • 53.

    Barbosa, H. S., Oliveira, M., Pacheco, D., Menezes, R. & Ghoshal, G. In Northeast Regional Conference on Complex Systems, (Binghamton, 2018).

  • 54.

    Cota, W., Ferreira, S. C., Pastor-Satorras, R. & Starnini, M. Quantifying echo chamber effects in information spreading over political communication networks. EPJ Data Sci. 8, 35 (2019).

    Article 

    Google Scholar 

  • 55.

    Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, 3111–3119 (Lake Tahoe, 2013).

  • 56.

    Kozlowski, A. C., Taddy, M. & Evans, J. A. The geometry of culture: analyzing the meanings of class through word embeddings. Am. Sociol. Rev. 84, 905–949 (2019).

    Article 

    Google Scholar 

  • 57.

    Yang, K.-C., Hui, P.-M. & Menczer, F. Bot electioneering volume. In Companion Proc. 2019 World Wide Web Conference, 214–217 (ACM, 2019).

  • 58.

    Bakshy, E., Messing, S. & Adamic, L. A. Exposure to ideologically diverse news and opinion on Facebook. Science 348, 1130–1132 (2015).

    MathSciNet 
    CAS 
    Article 
    ADS 

    Google Scholar 

  • 59.

    Robertson, R. E. et al. Auditing Partisan Audience Bias within Google Search. Proceedings of the ACM on Human-Computer Interaction, 2(CSCW) (ACM, 2018).

  • 60.

    Robertson, R. Partisan bias scores for web domains. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/QAN5VX (2018).

  • 61.

    Guess, A., Nagler, J. & Tucker, J. Less than you think: prevalence and predictors of fake news dissemination on Facebook. Sci. Adv. 5, eaau4586 (2019).

    Article 
    ADS 

    Google Scholar 

  • 62.

    Pennycook, G. & Rand, D. G. Fighting misinformation on social media using crowdsourced judgments of news source quality. Proc. Natl Acad. Sci.USA 116, 2521–2526 (2019).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Bovet, A. & Makse, H. A. Influence of fake news in Twitter during the 2016 US presidential election. Nat. Commun. 10, 7 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 64.

    Schank, T. & Wagner, D. Approximating clustering coefficient and transitivity. J. Graph Algorithms Appl. 9, 265–275 (2005).

    MathSciNet 
    Article 

    Google Scholar 

  • 65.

    Chen, W., Pacheco, D., Yang, K.-C. & Menczer, F. Neutral bots probe political bias on social media. https://doi.org/10.5281/zenodo.4750190 (2021).

  • Tags:

    You Might also Like

    Leave a Comment

    Your email address will not be published. Required fields are marked *